More concordance homomorphisms from knot Floer homology

نویسندگان

چکیده

We define an infinite family of linearly independent, integer-valued smooth concordance homomorphisms. Our homomorphisms are explicitly computable and rely on local equivalence classes knot Floer complexes over the ring $\mathbb{F}[U, V]/(UV=0)$. compare our invariants to other coming from homology, discuss applications topologically slice knots, genus, unknotting number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Heegaard Floer Homology to Knot and Link Concordance

Applications of Heegaard Floer Homology to Knot and Link Concordance

متن کامل

Floer Homology and Knot Complements

We use the Ozsváth-Szabó theory of Floer homology to define an invariant of knot complements in three-manifolds. This invariant takes the form of a filtered chain complex, which we call ĈF r. It carries information about the Ozsváth-Szabó Floer homology of large integral surgeries on the knot. Using the exact triangle, we derive information about other surgeries on knots, and about the maps on ...

متن کامل

An Introduction to Knot Floer Homology

This is a survey article about knot Floer homology. We present three constructions of this invariant: the original one using holomorphic disks, a combinatorial description using grid diagrams, and a combinatorial description in terms of the cube of resolutions. We discuss the geometric information carried by knot Floer homology, and the connection to threeand four-dimensional topology via surge...

متن کامل

Knot Floer Homology and Integer Surgeries

Let Y be a closed three-manifold with trivial first homology, and let K ⊂ Y be a knot. We give a description of the Heegaard Floer homology of integer surgeries on Y along K in terms of the filtered homotopy type of the knot invariant for K. As an illustration of these techniques, we calculate the Heegaard Floer homology groups of non-trivial circle bundles over Riemann surfaces (with coefficie...

متن کامل

An Introduction to Instanton Knot Floer Homology

Let Y be a finite CW-complex of dimension at most three and P → Y an SO(3) bundle. Associated with P are its Stiefel–Whitney classes wi(P ) ∈ H i(Y ;Z/2), i = 1, 2, 3. Only one of them, namely, w2(P ) ∈ H (Y ;Z/2), will be of importance to us, for the reason that w1(P ) = 0 since P is orientable, and w3(P ) = Sq (w2(P )) by the Wu formula. The class w2(P ) can be defined as follows. Let {Uα } b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2021

ISSN: ['1364-0380', '1465-3060']

DOI: https://doi.org/10.2140/gt.2021.25.275